Model 4301 Modular Power Analyzer

- 0.1% reading and 0.1% range accuracy
- Up to 16 Power Analyzer modules in a single chassis
- 25 standard AC and DC, static and dynamic measurements
- Dual DSPs with 1MHz sampling rate
- 6 voltage and current ranges plus auto-ranging for increased accuracy
- Peak-Peak noise measurements, 10Hz - 20MHz
- Two Digital Logic Inputs per module
- Chassis communications through a PC/LAN with LabVIEW and IVI-compliant drivers

Applications

The Model 4301 Power Analyzer is primarily designed for use in automated test environments configured for simultaneous testing of multiple power conversion UUTs. The Analyzer’s advantage in this application are speed, size and measurement performance. Speed is achieved through having a single instrument capable of making a wide range of measurements dedicated to each test channel. Test system size is minimized through the modular single-card design, 16 of which can be fitted into a multi-instrument chassis. Measurement performance is achieved by deriving an extensive number of high accuracy measurements from a digitized waveform. This last capability is particularly useful where input as well as output measurements are necessary to precisely calculate UUT efficiency.

3 Instruments in 1 Through Waveform Digitization

The 4301 Analyzer can be thought of as functionality equivalent to three instruments: a power meter, a multimeter and an oscilloscope. This capability is achieved through the Analyzer’s state-of-the-art, dual A/D converters with a 1MHz sampling rate that provides the data to make practically any power-conversion-related static or dynamic measurement provided by the three types of instruments above.

Another benefit of the high-speed digitization rates provided by the Digital Power Analyzer is its oscilloscope function. This allows the display of both voltage and current waveforms for analysis of high-speed transients that ordinarily wouldn’t be caught by previous generation power meters.
Model 4301 Power Analyzer Measurement Specifications

<table>
<thead>
<tr>
<th>Measurements Available</th>
<th>DC Voltage</th>
<th>DC Current</th>
<th>AC Voltage TRM</th>
<th>AC Current TRM</th>
<th>Power Average, True, Apparent, Reactive</th>
<th>Power Factor</th>
<th>Frequency</th>
<th>Waveform</th>
<th>Rise Fall Settling</th>
<th>Turn-On Hold-Up Time, Event, THD</th>
<th>Peak to Peak Noise</th>
<th>DIN Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
<td>Resolution</td>
<td>Accuracy</td>
<td>Range</td>
<td>Accuracy</td>
<td>Resolution</td>
<td>Accuracy</td>
<td>Voltage Bandwidth</td>
<td>Current Bandwidth Amplitude</td>
<td>Time Accuracy</td>
<td>Sample Rate</td>
<td>Record Length</td>
</tr>
<tr>
<td></td>
<td>±15/30/60/120/250/600 VDC</td>
<td>14/15 Bits</td>
<td>0.1% of reading + 0.1% of range</td>
<td>±0.01/0.05/0.2/1/5/20 IDC</td>
<td>13 Bits</td>
<td>0.1% of reading + 0.1% of range</td>
<td>17/70/350/150VAC, 16 Bits, CF=1.7</td>
<td>9/35/150VAC, 15 Bits, CF=3</td>
<td>0.1% of reading + 0.1% of range</td>
<td>0.01/0.05/0.2/1/5/20AAC, 15 Bits, CF=3</td>
<td>0.005/0.02/0.1/0.5/2/10AAC, 14 Bits, CF=6</td>
<td>0.1% of reading + 0.1% of range</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Current range times Voltage range</td>
<td>Current range and Voltage range</td>
<td>10 - 1000Hz</td>
<td>DC to 500kHz</td>
<td>DC to 100kHz</td>
<td>2% of DC Range</td>
<td>2% of DC Range</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Current range times Voltage range</td>
<td>Current range and Voltage range</td>
<td>0.5% of reading</td>
<td>DC to 1MHz</td>
<td>DC to 10MHz</td>
<td>3% of range</td>
<td>12 Bits</td>
</tr>
</tbody>
</table>

The 4300 chassis with Model 4301 Power Analyzers and Model 4350 DC Loads

16601 Hale Avenue, Irvine, California 92606
Tel: 949-474-3900 | Fax: 949-474-7062
E-mail: sales@nhresearch.com
www.nhresearch.com

© Copyright 2017, NH Research Incorporated. Pub 11-01-17 JC
All rights reserved. Specifications subject to change without notice.