Tag: battery simulator

How is a Battery Emulator Different from Power Supplies & Electronic Loads?

Battery Emulator vs. Power Supplies and Loads - NH Research (NHR)

Battery Emulators VS. Power Supplies & Electronic Loads

Battery emulators are bi-directional, whereas power supplies and loads are unidirectional devices. A power supply regulates voltage and expects some amount of current to be drawn. Electronic loads regulate current and expect voltage to be provided. Being uni-directional, these devices are unable to accept or supply power in the reverse direction.

An approach engineers often take is to build their own test setup using sources and loads. This can be challenging, and time consuming, and has many of the disadvantages of the common DC bus architecture described above. Typically, DC sources have a programmed response time of 10 to 100 ms, which is far too slow for today’s EV applications such as electric powertrains. For example, using a DC load to modulate power or provide a return path for back-EMF requires complicated software development, considerable integration and test time, and does not provide an accurate simulation of the battery’s internal resistance. Additionally, the load must consume power at all times, and since it is not regenerative, all of the power is dissipated as heat waste, increasing operating costs and creating uncomfortable work conditions.

Battery emulators maintain a positive DC voltage and can immediately accept or deliver current, allowing power to flow in either direction. More advanced battery emulators, like NHR’s 9300 Battery Emulator, allow further real- world simulation of battery characteristics by modeling the battery packs series-resistance (RINT).

The RINT Model: Accurately Simulating Battery Characteristics

The Internal Resistance (RINT) model provides a simulation of the battery’s internal chemical resistance, along with additional pack resistances created by internal connections, contactors, and safety components. The RINT model can be implemented with a true bi-directional source (Vocv) and a programmable series-resistance (Rs). This model is sufficient for understanding the major characteristics of battery-based resistances and pack resistances. While the number of mathematical models has increased, these more complicated models are used to understand the electro-chemical characteristics of batteries, the nuances of  which have little impact on the overall system when compared with the total resistance of the pack.

NHR’s battery emulators feature this equivalent RINT Model providing an electronically programmable “Battery Emulation” mode. As in a real battery, NHR’s battery emulators adjust the output voltage depending on the direction and amplitude of current flow.  This automatic adjustment of output voltage better simulates real-world battery pack characteristics especially when compared with common DC-bus and source/load simulation systems.

Need Help? Contact Us

Battery emulation is ideal for applications such as electric powertrain, fuel cell emulation, energy storage systems emulation, Solar PV inverter testing, DC Bus emulation, and more. For more information about key differentiators and technology considerations for battery emulation, please contact us.

Tagged with: , , , , ,

Testing Electric Vehicles Using Battery Emulation

Testing Electric Vehicles with Battery Emulation - NH Research (NHR)

Today, next generation battery emulation provides a competitive advantage for testing electric vehicle (EV) components and systems. Battery Emulation is ideal for testing the electric powertrain, DC fast charging and other EV applications in which a battery is required for testing.

Using batteries as power sources for testing is an extremely time-consuming and costly challenge across the transportation electrification industry including EV, aerospace, and e-mobility markets. The transition from traditional to modern electrification architectures, require flexible and scalable testing methodologies. Testing with batteries can delay projects, increase safety risks and hinder engineering productivity. As electrification is evolving to higher power demands, the ability to emulate a battery or energy storage systems with speed and accuracy is critical. Battery emulation can substantially reduce test time, energy consumption and operating costs.

Battery Emulation Testing vs. Real Battery Testing

There are 3 key benefits to testing electric vehicles with battery emulation or battery simulator testing, rather than using a real battery. Battery emulation dramatically reduces testing time, provides highly repeatable test results, and creates a safer test environment. This results in preparation time, operator errors, and result variations due to battery temperature or aging, being eliminated.

Testing EVs with Battery Emulation Reduces Testing Time

Testing a real battery often requires operator preparation for each step. Batteries must first be charged, or discharged, then allowed to rest, and finally tested. The significant battery preparation time can be avoided by using an emulated battery. Emulation can reduce total test times by more than 70%.

Battery Emulation Provides Repeatable Test Results

Over time, batteries provide inconsistent test results, wear out, and need to be replaced. Battery age, internal temperature, and cycling are all contributing factors to the limited battery life-span. Manual battery operation, including rest time facilitation, can also cause inaccurate test results. Battery emulation provides consistent and repeatable test results, unlike those from real battery testing, during which battery changes and operator errors cause variations in test results.

Battery Emulation Improves Safety

Although batteries are generally safe when operated within normal operating ranges, they are high energy devices that may pose serious risks upon battery or unit under test (UUT) failure. Such risks include exposure to dangerous gases, fires, explosions, or corrosive chemicals. These concerns have led to safety policies stating that tests must be conducted and monitored during working hours. Furthermore, testing extreme cases of over-discharged or over-charged batteries can pose unpredictable risks and safety hazards. Battery emulation creates a safe testing environment without any of the concerns that arise when real batteries are used. Also, emulation safely verifies UUT behavior when a battery is outside a normal operating condition.

Not all Battery Emulators are Created Equal

While testing with real batteries is possible, it can seem quite impractical. Using battery emulator or battery simulator testing produces test results faster, provides a consistent test, and can safely test power electronic devices that typically require a real battery.

However, not all battery emulators, regenerative DC sources and DC common bus architectures are optimally designed to provide accurate and timely results. There are key technology considerations when selecting a battery emulator for your application. Contact us to learn what battery emulation capabilities are the right approaches for faster, scalable and more repeatable testing.

View Electric Vehicle Test Solutions

Tagged with: , , , , , , ,

NHR Presents & Exhibits at International Battery Seminar 2020 in Orlando, Florida

EV Battery - NH Research (NHR)

NH Research Inc., a leading provider of power testing instruments and systems for the automotive, industrial, energy storage, and critical-power markets, will be presenting at International Battery Seminar 2020.

Martin Weiss, Product Director at NHR, will present in a lightning talk entitled, “Battery Module/Pack Testing: Current Challenges & Opportunities”. In this session, participants will learn what unique battery module/pack testing capabilities are the right approaches for faster, scalable and more repeatable testing. We’ll also share next generation techniques for testing various lithium-ion battery applications from design to production.

NHR will also exhibit its industry leading Battery Module/Pack Testers and Battery Emulators. Visit booth # 413 to learn about NHR’s flexible and battery and fuel cell test equipment. Application engineers will be on-hand to demonstrate NHR’s flexible 9200 & 9300 series battery module and pack test systems,

Event: International Battery Seminar
Location: Orlando, Florida
Dates: March 30 ‐ April 2, 2020
Visit Booth: #413

NHR Presentation: Battery Module/Pack Testing: Current Challenges & Opportunities
Date: Thursday, April 2, 2020 at 3:25pm-3:55pm
Track: C4B Battery Management Systems conference

Description: Battery module/pack testing is critical across all stages of battery R&D and production, but traditional methods of battery testing are an extremely time-consuming and costly challenge. Today, testing requires more flexibility and scalability to meet the growing demands of electrification and high performance. This presentation will equip battery manufacturers with cutting-edge technologies, trends, and test solutions for battery module/pack testing.
For more information, visit our Battery Test Solutions webpage.

About NH Research

Tagged with: , , , , , , , , ,