????: Applications

Electric Vehicle Market Drivers and Testing Requirements

Electric Vehicle Test Requirements

EV Batteries & Powertrains Increase in Power Levels

As the electric vehicle (EV) industry continues to accelerate, automotive engineers must address new testing challenges for designing higher performance batteries, electric powertrain systems, power electronic components and DC fast chargers. Power levels are increasing across e-mobility markets such as passenger electric vehicles, heavy duty electric trucks, and electric fleets. These market trends require test solutions that can test today’s technologies and tomorrow’s innovations.

Power and voltage levels are transitioning from a traditional 300/400VDC level toward 800/1000VDC. Higher voltages permit faster charging and increase power transfer while reducing vehicle weight. For example, in 2019 most available BEVs were similar to Tesla?s Model 3 and GM?s Chevy Bolt, with a nominal voltage of ~350VDC, whereas Porsche announced the Taycan architecture utilizing a higher 800VDC battery system. This higher voltage allows nearly three times (3x) the additional power to be transferred for the same wire size. Porsche demonstrated this with an IONITY system charging at 350kW, which is nearly 3x the 120kW available through other ?fast? supercharging networks.

It is expected that both 800V and 350V vehicles will charge at an electric-only refueling station the same way gasoline and diesel cars do today. Engineers should keep this dual-voltage reality in mind when specifying the power requirements because many of the high-power test systems are only designed for a single range. Selecting a system that can provide both traditional and high-voltage levels ensures that the right equipment is available to meet current and future needs. It is equally important that a battery emulation system reacts with a quick voltage response to changes in current or power draw in order to accurately simulate the electrical storage system (battery).

Auto manufacturers have dramatically increased the relative capacity of the battery packs in their vehicles to reduce ?range anxiety?. For example, the 2019 Nissan Leaf has a 50% larger battery compared to older 40kW models, and Tesla?s Model S offers a 100kW battery, that is 66% larger than the original standard-sized battery. Battery capacity and battery performance are always improving, suggesting that engineers must consider flexibility and programmability in selecting a battery test or battery emulation solution.

EV Testing Requires Modular, Scalable Test Solutions

NHR Provides Modular, High Voltage Bi-Directional Power up to 2.4 MW

NHR’s ev test equipment is designed for fully independent operation and can be paralleled, increasing the maximum power and current capability to the level required. This modular expansion through paralleling ensures that you can start testing to today?s application levels, knowing that additional power is available if needed in the future. Higher-power models provide dual ranges, allowing the equipment to test and emulate today?s batteries and provide the right tool that can scale to address increases in battery voltage and power.

그만큼 9300 고전압 배터리 테스트 시스템 has a dual power range that covers both lower (up to 600 V) and higher power (up to 1200 V) applications using a single product. This modular system can be scaled up to 2.4 MW in 100 kW building blocks, offering a wide operating envelope. With NHR?s battery emulation mode, customers are able to simulate a wide range of battery power levels without having to change test equipment. Alternatively, the 9200 배터리 테스트 시스템 has a multi-channel capability with the possibility to mix and match voltage and current levels at lower power ranges. This battery cycler and battery emulator is expandable in 12kW block sizes and has voltage options from 40V to 600VDC. This series uses the same drivers, touch panel controls, and software options, making NHR your ideal solution partner for both high-power and low-power EV architectures.

Additional Resources:

For more information on EV testing, please 연락하기.

???? , , , ,

How is a Battery Emulator Different from Power Supplies and Electronic Loads?

Battery Emulator vs. Power Supplies and Loads - NH Research (NHR)

Battery Emulators VS. Power Supplies & Electronic Loads

Battery emulators are bi-directional, whereas power supplies and loads are unidirectional devices. A power supply regulates voltage and expects some amount of current to be drawn. Electronic loads regulate current and expect voltage to be provided. Being uni-directional, these devices are unable to accept or supply power in the reverse direction.

An approach engineers often take is to build their own test setup using sources and loads. This can be challenging, and time consuming, and has many of the disadvantages of the common DC bus architecture described above. Typically, DC sources have a programmed response time of 10 to 100 ms, which is far too slow for today?s EV applications such as electric powertrains. For example, using a DC load to modulate power or provide a return path for back-EMF requires complicated software development, considerable integration and test time, and does not provide an accurate simulation of the battery?s internal resistance. Additionally, the load must consume power at all times, and since it is not regenerative, all of the power is dissipated as heat waste, increasing operating costs and creating uncomfortable work conditions.

Battery emulators maintain a positive DC voltage and can immediately accept or deliver current, allowing power to flow in either direction. More advanced battery emulators, like NHR?s 9300 Battery Emulator, allow further real- world simulation of battery characteristics by modeling the battery packs series-resistance (RINT).

The RINT Model: Accurately Simulating Battery Characteristics

The Internal Resistance (RINT) model provides a simulation of the battery?s internal chemical resistance, along with additional pack resistances created by internal connections, contactors, and safety components. The RINT model can be implemented with a true bi-directional source (Vocv) and a programmable series-resistance (Rs). This model is sufficient for understanding the major characteristics of battery-based resistances and pack resistances. While the number of mathematical models has increased, these more complicated models are used to understand the electro-chemical characteristics of batteries, the nuances of  which have little impact on the overall system when compared with the total resistance of the pack.

NHR’s battery emulators feature this equivalent RINT Model providing an electronically programmable ?Battery Emulation? mode. As in a real battery, NHR?s battery emulators adjust the output voltage depending on the direction and amplitude of current flow.  This automatic adjustment of output voltage better simulates real-world battery pack characteristics especially when compared with common DC-bus and source/load simulation systems.

Need Help? Contact Us

Battery emulation is ideal for applications such as electric powertrain, fuel cell emulation, energy storage systems emulation, Solar PV inverter testing, DC Bus emulation, and more. For more information about key differentiators and technology considerations for battery emulation, please 연락.

???? , , , , ,

NHR, 5 월 13 일 라이브 웨비나 : Electric Powertrain 차세대 테스트 솔루션 발표

EV X-ray 파워 트레인 측-NH Research (NHR)

자동차, 산업, 에너지 저장 및 임계 전력 시장을위한 전력 전자 및 배터리 테스트 솔루션의 선두 공급 업체 인 NH Research Inc.는 2020 년 5 월 13 일 Electric Powertrain Next Gen 테스트 솔루션에 대한 무료 라이브 웨비나.

이 라이브 웨비나에서 NHR의 선임 응용 엔지니어 Ben Jackson, 전력 트레인 개발에 영향을 미치는 주요 산업 동향, 현재 과제 및 기회, 올바른 테스트 접근 방식 선택의 주요 요인에 대해 논의합니다. 이 세션에서는 최신 전기 파워 트레인 테스트 솔루션 및 배터리 에뮬레이션에 대한 주요 고려 사항을 다룹니다.

웨비나 설명 :
자동차 및 항공 우주에서 전기가 계속 가속화됨에 따라 엔지니어는 하이브리드 및 전기 파워 트레인에 대한 새로운 테스트 문제를 해결해야합니다. 현대 추진 시스템 아키텍처는 근본적으로 다르며 새로운 도전과 위험을 제시합니다. 따라서 엔지니어는 가장 효과적인 기술과 테스트 방법을 사용하여 제품 성능, 안전성, 신뢰성 및 출시 시간 단축을 보장하는 것이 중요합니다.

전기 파워 트레인 시스템은 복잡하고 전압 및 전력 레벨 증가, 긴 테스트 시간 및 다양한 안전 위험을 포함하여 새로운 테스트 과제를 제기합니다. 기존의 파워 트레인 테스트 방식은 단점과 한계가있는 단방향 장치에 의존합니다. 차세대 배터리 에뮬레이션은 전압 레귤레이션을 유지하기 위해 싱크 및 소스로 양방향 접근 방식을 제공하고, 안전 위험을 방지하는 EMF를 수용하며, 단일 장애 지점을 제거하기 위해 입력 및 출력 경로를 분리합니다.

이 세션에서는 배터리를 에뮬레이션하기위한 최신 솔루션이 어떻게 전동 파워 트레인 시스템을보다 빠르고 확장 가능하며 반복적으로 테스트 할 수있는 올바른 방법인지 검토합니다. 통전이 더 높은 전력 요구로 발전함에 따라 배터리를 속도와 정밀하게 에뮬레이트하는 능력이 중요합니다. 배터리 에뮬레이션은 테스트 시간, 위험, 에너지 소비 및 운영 비용을 크게 줄일 수 있습니다.

이 웹 세미나에서 다음에 대해 알아보십시오.

  • 주요 산업 동향, 과제 및 기회
  • 전동 파워 트레인 테스트 솔루션
  • 배터리 에뮬레이션 차별화 요소 – 배터리 에뮬레이터에서 찾아야 할 사항
  • 응집력 있고 확장 가능하며 직관적 인 소프트웨어 솔루션

라이브 이벤트에 참석할 수 없으면 등록하십시오 녹음을 보내 드리겠습니다.

  • 웹 세미나 이벤트 : Electric Powertrain Next Generation Test Solutions
  • 날짜 : 20-30 년 5 월 13 일 수요일 오후 2-3시 (DTD)
  • 지금 등록하세요

EV Powertrain Solutions에 대한 자세한 내용은 응용 프로그램 페이지를 방문하십시오.

NH 리서치 소개

NHR은 오늘날의 기술에 대한 혁신, 검증 및 기능 테스트를 가속화하여 전기를 통하게합니다. 전력 변환 및 전력 전자 테스트 시스템 및 계측기에서 50 년 이상의 경험을 바탕으로, 당사의 테스트 솔루션은 항공 우주, 방위, 자동차 및 에너지 산업 분야의 엔지니어와 연구원이 요구하는 성능, 단순성 및 안전성을 제공합니다.

자세한 내용은 www.nhresearch.com을 방문하십시오.

???? , ,