Category: Applications

The Ideal Regenerative Grid Simulator for Microgrid Testing

Microgrid Solar Wind Power Testing - NH Research (NHR)

NHR’s Regenerative Grid Simulator Accurately Emulates the Utility Grid

Regenerative Grid Simulator Model 9410 - NH Research (NHR)If you’re looking for a regenerative grid simulator or grid emulator, NHR’s 9410 has key competitive advantages over the market. NHR’s Regenerative Grid simulator is ideal for simulating complex power disturbances ideal for testing micro-grid and smartgrid applications.

NHR’s Regenerative Grid Simulator (9410) is a unique four-quadrant bi-directional AC/DC source that simulates the utility voltage and regenerates power sourced by grid-tied inverters. Greater than 90% of power is returned to the facility thereby providing significant energy savings. The 9410 is used as a grid simulator, or emulator for testing PV inverters and other grid-tied products for compliance to IEEE 1547, UL 1741, and global industry standards. A wide-range of AC conditions can be emulated including phase imbalance (in voltage and/or phase angle relationship), voltage sag, frequency changes and harmonic injection.

Modular and Scalable Power

The Regenerative Grid Simulator (9410) is flexible in both output form and power level. Output can be AC or DC and the AC can be single, split or 3-phase. Frequency is programmable between 30 and 100 Hz. Power is scalable from 4 kW to 96kW. With this broad selection of power, phase configuration and frequency, this grid simulator provides the flexibility to test the widest range of grid-tied products. The included measurement system also eliminates the need for additional power meters, DMMs, oscilloscopes, or spectrum analyzers.

3 Channel Multiple Configuration - NH Research (NHR)

Figure 1 – 3 channels with multiple configuration possibilities

Accurate Emulation of Complex Power Disturbances

The Regenerative Grid Simulator (9410) is able to replicate power line disturbances through a combination of user-definable waveforms and Macros. User-defined waveforms permit generation of non-sinusoidal voltages including asymmetrical inflections, transient anomalies, voltage harmonics, or any other irregularity which can be drawn as a single-cycle. The grid simulator can emulate sub-cycle transients, phase jumps and multi-cycle line conditions as required.

Simulating Voltage Harmonics - NH Research (NHR)

Simulating Area EPS Voltage Harmonics

Simulating Sub-cycle Transients - NH Research (NHR)

Simulating Sub-cycle Transients

Simulating Phase Jump - NH Research (NHR)

Simulating Phase Jump

Simulating Abnormal Voltages - NH Research (NHR)

Simulating abnormal voltages (sags, swells & drop outs)

This modular Grid-Simulator is used to verify product AC performance while a 9200/9300 Bi-directional DC Source may be used to emulate any energy storage system.

For more information, please visit our product webpage or contact us for a quote.

Learn More

Applications Include:

  • Grid Simulation: Microgrid, Smartgrid systems
  • V2G, ESS
  • On-board Chargers, Grid-aware Chargers
  • Grid Utility Test
  • PV/Grid Tied Inverter Test
  • Compliant with UL1741, IEEE1547 and similar grid-tied standards world-wide
Tagged with: , , ,

Regenerative AC Load with 4 Quadrant Functionality

EVs Charging - NH Research (NHR)

Bi-directional AC Load Accurately Emulates Complex Load Profiles

If you’re looking for a regenerative AC load with advanced capability, NHR’s 9430 has key advantages over the market. NHR’s Regenerative AC Load is ideal for simulating almost any complex linear or non-linear load.

The 9430 is a current-regulated, 4-quadrant AC load with selectable phase inputs/outputs and a built-in waveform digitizing measurement system. Greater than 90% of power is returned to the facility thereby providing significant energy savings. Applications include testing of Vehicle to Grid (V2G), solar and grid-tied inverters, UPSs, AC sources, rectifiers, circuit breakers and fuses.

AC Load 4-Quadrant Operation Offers Bi-directional Capability

Regenerative AC Load Model 9430 - NH Research (NHR)The most unique feature of NHR’s Regenerative AC Load (9430) is the ability to operate in all 4-quadrants. The 4-quadrant AC load allows for emulation of current draws historically requiring use of discrete components such as capacitors and inductors. Multiple bi-directional power conversion stages take place internally to generate the AC or DC current output depending on the hardware operating mode.

This bi-directional capability significantly expands load simulation relative to 2-quadrant AC loads. The Regenerative AC Load (9430) allows creating the reverse current caused by inductive or capacitive loads (low power factors). Power is sent back to the UUT (source) during part of the AC cycle (Fig. 1). In this manner, the 9430 accurately duplicates real-world reactive electrical power flows.

Inductive Load Bi-directional Waveform - NH Research (NHR)

Figure 1 – 0.5 PF Inductive Load waveform showing bi-directional power flows.

HIVAR design provides reactive loading without derating True Power

This advanced design feature allows for testing high reactive load input power without the customary reduction of true power (Watts) normally required with conventional loads. The HiVAR design provides testing sources with reactive power (VARs) as large as 2.6 x true power (Watts). All 9430 Loads are rated both for true power and apparent power. For instance, a 12kW AC load is also rated for 31.5kVA.

This Regenerative AC Load (9430) supports full-time current loading including at full Line-Neutral voltage up to true power rating of the system, providing a wider operating envelope. By comparison, traditional AC loads are resistive, and are unable to provide a true power factor shift, and are able to only draw current up to the thermal power rating of the system.

Constant Power Envelope - NH Research (NHR)

Constant Power Envelope for 9430-12 operating as 1-Φ-load

Regenerative AC Load with Several Emulation Modes

To provide testing under the broadest range of loading conditions, the Regenerative AC Load (9430) will operate in several emulation modes. Constant Current (CC) Mode provides current to be drawn constantly, making it suitable for linear, non-linear and regulation loading. Constant Resistance (CR) Mode allows the load to emulate a power resistor with a unity power factor. Constant Power (CP) Mode emulates a load such as a switching power supply. Constant Apparent Power (CS) Mode expressed as VA, is a vector quantity where there is both real power and reactive power. Constant RL (CRL) Mode emulates a resistive load with an inductive component such as a motor.

User-defined Waveforms

The Regenerative AC Load (9430) has an easy to use graphics editor to create waveforms based on current, power and crest factor. Easily duplicate waveform distortions or transient events such as spikes, dropouts or any other anomaly that can be drawn as a single cycle. A second powerful user-defined waveform tool is the Macros. These are pre-programmed sequence of settings where each new setting is effective for a sub-cycle, any number of cycles or for a fixed amount of time.

For more information, please visit our product webpage or contact us for a quote.

Learn More

Applications Include:

  • Full Line Disturbances at Any Power Factor
  • Grid Utility Test, Inverter Test, UPS Test
  • EV Load Testing
  • Switch, Fuse Test
  • Linear and Non-linear Loading, Inductive and Capacitive Loading Requirements
Tagged with: , , , , , , ,

NHR Presents Live Webinar: Electric Aircraft Test Approaches

Electric Aircraft Test Approaches - NH Research (NHR)

NH Research Inc., a leading provider of power electronics and battery test solutions for the automotive, industrial, energy storage, and critical-power markets, will be hosting a free live webinar, Electric Aicraft Test Solutions, held on September 1st, 2020.

In this live webinar, Daniel McClelland will provide new insights on how to test traditional, hybrid and full-electric aircrafts. In this session, participants will learn how to recreate an aircraft environment with the right test equipment and test approaches.

Webinar Description:
Electric flight raises unique and unprecedented testing challenges. Therefore, it is important for engineers to use the most effective technologies and test approaches to ensure product performance, safety, reliability and reduced time to market. This webinar will review key technology considerations for battery test systems, battery emulation, loading and sourcing test solutions.

Whether you’re testing a traditional, hybrid, or full-electric aircraft system, modern test solutions are required for faster, scalable and repeatable testing. Learn how you can recreate an aircraft environment using the right test solutions that will substantially reduce test time, risk, energy consumption and operating costs. We’ll share best practices and techniques for testing electric batteries, propulsion systems, power distribution units (PDUs) and power converters/inverters.

In this webinar, learn about:

  • Market Trends, Challenges, and Opportunities
  • Key Technology Considerations and Testing Requirements
  • Modern Test Solutions and Approaches
  • Industry Applications and Use Cases

Who should attend? Commercial, military aircraft and private manufacturers and suppliers across traditional, hybrid and fully electric aircraft, e-VTOL, drones, and urban air mobility (UAM) platforms

For more information on our Electric Aircraft Solutions, visit our industry page.

About NH Research

NH Research enables electrification by accelerating innovation, validation and functional testing of today’s technologies. Backed by over 50 years of experience in power conversion and power electronics test systems and instruments, our test solutions deliver the performance, simplicity, and safety that engineers and researchers in aerospace, defense, automotive and energy industries require. For more information, visit https://nhresearch.com